

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	maec-to-stix 1.0.0-alpha1 documentation

Welcome to maec-to-stix’s documentation!

The maec-to-stix library provides scripts and APIs for wrapping MAEC
content in STIX, and also extracting STIX Indicators from MAEC
dynamic analysis data.

For more information about MAEC, please visit the
MAEC website [http://maec.mitre.org/]. For more information about STIX,
please visit the STIX website [http://stix.mitre.org].

Contents

	Installation
	Recommended Installation

	Dependencies

	Manual Installation

	Further Information

	Getting Started
	Installation

	Scripts

Indicator Extraction

	Indicator Extraction
	Overview

	MAEC Actions

	Actions → Indicators

	Example

	Indicator Extraction Process
	Configuration Parsing

	MAEC Package Parsing

	Indicator Object Selection & Filtering

	STIX Indicator Creation

	Indicator Extraction Configuration
	Overview

	Configuration Structures

	Indicator Extraction Configuration Files
	Overview

	Installation and Usage

API Reference

	API Documentation
	maec_to_stix Module

	maec_to_stix.stix_wrapper Module

	maec_to_stix.indicator_extractor Module

	maec_to_stix.indicator_extractor.config_parser Module

	maec_to_stix.indicator_extractor.indicator_filter Module

	Example Code
	Import maec-to-stix

	Wrapping MAEC Content in STIX

	Extracting STIX Indicators from MAEC Content

Contributing

If a bug is found, a feature is missing, or something just isn’t behaving the
way you’d expect it to, please submit an issue to our tracker [https://github.com/MAECProject/maec-to-stix/issues]. If you’d like
to contribute code to our repository, you can do so by issuing a pull request [https://help.github.com/articles/using-pull-requests]
and we will work with you to try and integrate that code into our repository.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Installation

The installation of maec-to-stix can be accomplished through a few different
workflows.

Recommended Installation

Use PyPI [https://pypi.python.org/pypi/maec-to-stix/] and pip [http://pip.readthedocs.org/]:

$ pip install maec-to-stix [--pre] [--upgrade]

Note

maec-to-stix is currently in alpha status. To install an alpha or
beta release via pip, you must specify the version number or use
--pre.

$ pip install maec-to-stix --pre

You might also want to consider using a virtualenv [http://virtualenv.readthedocs.org/].
Please refer to the pip installation instructions [http://www.pip-installer.org/en/latest/installing.html] for details regarding the
installation of pip.

Dependencies

The maec-to-stix package relies on some non-standard Python libraries for the
processing of XML content. Revisions of maec-to-stix may depend on particular
versions of dependencies to function correctly. These versions are detailed
within the distutils setup.py installation script.

The following libraries are required to use maec-to-stix:

	python-maec [https://github.com/MAECProject/python-maec] - A python library for parsing and creating MAEC content.

	python-stix [https://github.com/STIXProject/python-stix] - A python library for parsing and creating STIX content.

Each of these can be installed with pip or by manually downloading packages
from PyPI.

Manual Installation

If you are unable to use pip, you can also install maec-to-stix with setuptools [https://pypi.python.org/pypi/setuptools/].
If you don’t already have setuptools installed, please install it before
continuing.

	Download and install the dependencies above. Although setuptools will
generally install dependencies automatically, installing the dependencies
manually beforehand helps distinguish errors in dependency installation from
errors in maec-to-stix installation. Make sure you check to ensure the
versions you install are compatible with the version of maec-to-stix you plan
to install.

	Download the desired version of maec-to-stix from PyPI [https://pypi.python.org/pypi/maec-to-stix/] or the GitHub releases [https://github.com/MAECProject/maec-to-stix/releases]
page. The steps below assume you are using the 1.0.0-alpha1 release.

	Extract the downloaded file. This will leave you with a directory named
maec-to-stix-1.0.0-alpha1.

$ tar -zxf maec-to-stix-1.0.0-alpha1.tar.gz
$ ls
maec-to-stix-1.0.0-alpha1 maec-to-stix-1.0.0-alpha1.tar.gz

OR

$ unzip maec-to-stix-1.0.0-alpha1.zip
$ ls
maec-to-stix-1.0.0-alpha1 maec-to-stix-1.0.0-alpha1.zip

	Run the installation script.

$ cd maec-to-stix-1.0.0-alpha1
$ python setup.py install

	Test the installation.

$ python
Python 2.7.8 (default, Mar 22 2015, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import maec_to_stix
>>> print maec_to_stix.__version__
1.0.0-alpha1

If you don’t see an ImportError, the installation was successful.

Further Information

If you’re new to installing Python packages, you can learn more at the Python
Packaging User Guide [http://python-packaging-user-guide.readthedocs.org/], specifically the Installing Python Packages [http://python-packaging-user-guide.readthedocs.org/en/latest/tutorial.html#installing-python-packages] section.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Getting Started

This page gives an introduction to maec-to-stix and how to use it. Please
note that this page is being actively worked on and feedback is welcome! If
you have a suggestion or something doesn’t look right, let us know:
(maec@mitre.org).

Note that the GitHub repository is named maec-to-stix, but
once installed, the library is imported using the import maec_to_stix
statement.

Installation

To install maec-to-stix just run pip install maec-to-stix. If you have
any issues, please refer to the instructions found on the
Installation page.

Scripts

These instructions tell you how to wrap MAEC content in STIX or extract STIX
Indicators from MAEC content using the scripts bundled with maec-to-stix.

Also discussed is the copying over of the JSON indicator extraction configuration
files to a user specified directory.

maec_wrap.py

Bundled with maec-to-stix is maec_wrap.py, which is used for wrapping
MAEC Package documents in STIX. It can be found on your PATH after
installing maec-to-stix.

Options

Running maec_wrap.py -h displays the following:

$ maec_wrap.py -h
 usage: maec_wrap.py [-h] [--outfile OUTFILE] infile

 MAEC to STIX Wrapper Script v1.0.0-alpha1

 positional arguments:
 infile the name of the input MAEC Package XML file to wrap in
 STIX.

 optional arguments:
 -h, --help show this help message and exit
 --outfile OUTFILE, -o OUTFILE
 the name of the output STIX Package XML file. If not
 specified, defaults to sys.stdout.

Basics

To wrap a MAEC Package in STIX, just provide the input filename
and optionally the output filename, respectively. If no output filename is
specified, the script will print the output STIX Package to sys.stdout.

$ maec_wrap.py maec_doc.xml --outfile stix_doc.xml

maec_extract_indicators.py

Also bundled with maec-to-stix is maec_extract_indicators.py, which is
used for extracting indicators from MAEC documents and outputting them in a STIX
Package. It can likewise be found on your PATH after installing maec-to-stix.

Options

Running maec_extract_indicators.py -h displays the following:

$ maec_extract_indicators.py -h
 usage: maec_extract_indicators.py [-h] [--outfile OUTFILE]
 [--config_directory CONFIG_DIRECTORY]
 [--print_options]
 infile

 MAEC to STIX Indicator Extraction Script v1.0.0-alpha1

 positional arguments:
 infile the name of the input MAEC Package XML file to extract
 indicators from.

 optional arguments:
 -h, --help show this help message and exit
 --outfile OUTFILE, -o OUTFILE
 the name of the output STIX Package XML file. If not
 specified, defaults to sys.stdout.
 --config_directory CONFIG_DIRECTORY, -c CONFIG_DIRECTORY
 the path to the directory housing the Indicator
 extraction JSON configuration files.
 --print_options, -p print out the current set of indicator extraction
 options, including the supported Actions and Objects.

Basics

To extract STIX Indicators from a MAEC MAEC Package, just provide the
input filename and optionally the output filename, respectively. If no output
filename is specified, the script will print the output STIX Package to
sys.stdout. Note that the behavior of the Indicator extraction is driven
by a set of JSON configuration files, covered in Indicator Extraction Configuration.
For more information on the indicator extraction process itself, please refer to
Indicator Extraction Process.

$ maec_extract_indicators.py maec_doc.xml --outfile stix_doc.xml

copy_maec_to_stix_config.py

The other script bundled with maec-to-stix is copy_maec_to_stix_config.py,
which is simply intended to copy over the installed JSON indicator extraction
configuration files to a user specified directory. For more information on the
indicator extraction configuration files, please refer to
Indicator Extraction Configuration.

Options

Running copy_maec_to_stix_config.py -h displays the following:

$ maec_to_stix.py -h
 usage: copy_maec_to_stix_config.py [-h] outpath

 MAEC to STIX configuration copying script

 positional arguments:
 outpath the output directory into which the MAEC to STIX Indicator
 extraction configuration files will be copied. If the directory
 does not already exist, it will be created by the script.

 optional arguments:
 -h, --help show this help message and exit

Basics

The only argument to the script is outpath, which should point to a
directory into which the JSON indicator extraction configuration files will be
copied. Note that if this directory does not exist, it will be created by the
script.

$ copy_maec_to_stix_config.py "temp\json_config"

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Indicator Extraction

This page describes the premise behind the indicator extraction process used in
maec-to-stix, for extracting STIX Indicators from MAEC Packages.

Overview

The diagram below highlights the overall process of extracting Indicators from
MAEC Packages, starting with the generation of the MAEC output from some dynamic
analysis tool (such as Cuckoo Sandbox [http://www.cuckoosandbox.org/]) and ending with inspection of the
resulting STIX Indicators by a human analyst. More details on the actual process
of extracting Indicators from MAEC is provided in the sections below.

[image: MAEC to STIX High-level Process]

MAEC Actions

One of the fundamental MAEC entities captured in the MAEC Package is the MAEC Action.
MAEC Actions represent discrete abstractions of system-level API calls,
and thus are the types of activity recorded by dynamic analysis tools (sandboxes)
such as Cuckoo, ThreatExpert, Anubis, etc.

Actions provide context as to the changes the malware made on the system, by
specifying the particular type of action that was performed, such as
create file, along with the entities that they operated on. In MAEC Actions,
such entities are represented with CybOX Objects, such as the File Object,
Windows Registry Key Object, etc.

Actions → Indicators

Certain types of Actions can leave detectable artifacts, whether they are discoverable
on an endpoint (such as files on the system where the malware executed) or on some
enterprise-level appliance (such as connection requests to particular IP addresses
on a network gateway). Accordingly, it follows that such Actions make a good basis for
the creation of indicators, as having the knowledge of those types of Actions that
leave detectable artifacts means that their resulting artifacts can be used as the basis
for detection, i.e. as indicators.

Thus, the high-level indicator extraction process flow in maec-to-stix is:

	Parse Input MAEC Document

	Extract MAEC Actions

	Look for Actions with Detectable Artifacts

	Perform Artifact Sanity/Consistency checking

	Create STIX Indicators for acceptable Artifacts (from 4.)

	Output STIX Indicators in new STIX Package

For more information on this process, particularly with regards to step 4,
please refer to Indicator Extraction Process.

It is important to note that this process is not fool-proof. Automatically
constructing indicators from such Actions is at best a starting point for
malware-oriented detection. However, it is HIGHLY recommended that such
indicators still be vetted by a human analyst in order to ensure that they do
not lead to false negatives or false positives.

Example

The following basic example demonstrates this premise with a notional MAEC Action
and the STIX Indicator that results from it after automatic extraction.

Input MAEC Action

<maecBundle:Action>
 <cybox:Name xsi:type="maecVocabs:FileActionNameVocab-1.0">create file</cybox:Name>
 <cybox:Associated_Objects>
 <cybox:Associated_Object>
 <cybox:Properties xsi:type="FileObj:FileObjectType">
 <FileObj:File_Path>C:\T3MP\lbsec.dll</FileObj:File_Path>
 <FileObj:Size_In_Bytes>619</FileObj:Size_In_Bytes>
 </cybox:Properties>
 <cybox:Association_Type>output</cybox:Association_Type>
 </cybox:Associated_Object>
 </cybox:Associated_Objects>
</maecBundle:Action>

Output STIX Indicator

<stix:Indicator xsi:type='indicator:IndicatorType'>
 <indicator:Title>Malware Artifact Extracted from MAEC Document</indicator:Title>
 <indicator:Observable>
 <cybox:Object>
 <cybox:Properties xsi:type="FileObj:FileObjectType">
 <FileObj:File_Path condition="Equals">C:\T3MP\lbsec.dll</FileObj:File_Path>
 <FileObj:Size_In_Bytes conditions="Equals">619</FileObj:Size_In_Bytes>
 </cybox:Properties>
 </cybox:Object>
 </indicator:Observable>
</stix:Indicator>

Again, this is a very simplistic example, but it demonstrates that the context
provided by the MAEC Action - that the file was created as the output of the
action - allows us to make the determination that it could be suitable as a STIX
Indicator.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Indicator Extraction Process

This page details the Indicator extraction process used in maec-to-stix.

Configuration Parsing

The first step involves parsing the JSON configuration files in order to build
up the list of supported MAEC Actions and CybOX Objects (along with their
properties). For more information on the configuration files, including how they
can be edited and used, please refer to Indicator Extraction Configuration Files.

MAEC Package Parsing

The next step is the parsing of the MAEC Package, including its child Malware
Subjects and their embedded Findings Bundles (which may contain MAEC Actions).
Accordingly, a STIX TTP is created for each Malware Subject, and then referenced
in the Indicated_TTP field of each STIX Indicator that gets extracted from
the Malware Subject.

Indicator Object Selection & Filtering

The process of selecting and filtering the CybOX Objects suitable for use in
Indicators itself contains several sub-steps, detailed below. This is done on a
per-Bundle basis.

Candidate Object Selection

The initial sub-step with regards to constructing Indicators is to create the
candidate list of CybOX Objects that may potentially be used as Indicators.
This is accomplished by creating an ObjectHistory [http://maec.readthedocs.org/en/latest/api/bundle/object_history.html#maec.bundle.object_history.ObjectHistory] instance for the Bundle,
which contains a list of the Objects found in the Bundle along with the Actions
that operated on them. This latter aspect is important, as the candidate Objects
are selected on the basis of having at least one supported MAEC Action
(as parsed in from the configuration files) that operates on them.

For example, suppose the following Actions and Objects are defined as supported:

	Supported Actions: create file

	Supported Objects: File Object

Thus, only the second Object History entry would be considered a candidate
Object, as it contains a supported Action.

	Object
	Actions
	Candidate Object

	File Object
	modify file, move file
	No

	File Object
	create file, write to file
	Yes

Candidate Object Filtering

After creating the list of candidate CybOX Objects, the next step is to further
filter this list based on the requirements dictated by the configuration files
as well as some further sanity checking.

Contra-indicator Testing

The first step in the candidate CybOX Object filtering process is the testing
of the Object History entries for contra-indicators. By this, we mean testing for
the existence of specific Actions performed on the Object that modify its state
and thus may render it unusable for detection. For example, deleting a file that
was created would mean that it may not be detectable and thus unsuitable for use
as an Indicator.

This logic operates by checking for specific terms in the names of the Actions
that operate on the Object, including for direct contra-indicators (such as “delete”),
and also for modifiers (such as “move”) where the Object may be used as an input
to the Action. Both of these sets of terms are captured as lists in the main
indicator extraction configuration file; for more information please refer to
Parameters.

For example, suppose the following list of contra-indicators and modifiers is
defined:

	Contra-indicators: delete

	Modifiers: move

Thus, the first two Object History inputs below would not pass the filter,
as they contain Actions that serve as contra-indicators for the presence
of the Object.

	Object
	Actions
	Contra-indicator

	File Object
	create file, move file
	Yes

	File Object
	create file, delete file
	Yes

	File Object
	create file, write to file
	No

Required Property Testing

If an Object History entry passes the contra-indicator tests, the next step in the
filtering process is to test whether it contains the required set of properties,
as specified in the Granular Configuration Files. For example, a file Object would not
be very useful without a file path that states where it can be found, or more
generally an MD5 (or other) hash value. Thus, this logic checks for the existence
of any required (or mutually exclusive required) properties that are defined
for a particular Object type.

Also checked here is whether the value of an Object property matches against
any of the whitelist entries specified in the configuration parameters for the
property. Such whitelist entries are intended to specify values that are
whitelisted from being searched for and therefore used in indicators. For example,
internal IP addresses would be good candidates for additions to such a whitelist,
as they would not make useful indicators. If an Object property value matches against
a whitelist entry, the property will not be included in the corresponding Indicator.
If such a property is required (or mutually exclusive required), this means that its
parent Object will be discarded and not used in a STIX Indicator. For more information
on how Object properties may be configured, including the use of the whitelist, please
refer to Object Configuration Parameters.

Extraneous Property Pruning

If a CybOX Object passes the required property testing, the final step in the
Object filtering process is to prune from it any extraneous properties, that is
those that aren’t specified as required or optional in the Granular Configuration Files.
With this step complete, the resulting list of CybOX Objects represents the final
Objects that will end up being used in the construction of the STIX Indicators.

Final Object Preparation

With the list of final (filtered and pruned) CybOX Objects constructed, there’s one
more step that must be done before these Objects can be used in STIX Indicators.
Because these Objects came from instance data as reported by a dynamic analysis
tool (i.e. sandbox), we need to modify them so that they now represent patterns
capable of being used in detection. This is achieved by setting the condition
attribute on each property of the Object; by default, this is set to a value of
Equals.

STIX Indicator Creation

The final step is the creation of the STIX Indicators themselves, one per each
of the final CybOX Objects described above. Besides using the CybOX Object in the
Observable of each Indicator, the following fields are populated:

	Title: states that the Indicator represents a malware artifact extracted from a MAEC document

	Type: set to “Malware Artifacts” from the IndicatorTypeVocab

	Description: includes the set of Actions that operated on the Object, e.g. “create file”

	Indicated_TTP: references the TTP that corresponds to the Malware Subject from which the Indicator was extracted

	Confidence/Value: set to a value of “Low” to denote that the Indicator was tool-generated

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Indicator Extraction Configuration

This page describes the configuration structures employed by maec-to-stix for
indicator extraction and how they may be modified by users in order to customize
the behavior of the utility.

Overview

Extracting indicators from malware is a process that requires fine tuning
based on a number of internal or external factors. As such, maec-to-stix
supports the customization of its behavior in terms of extracting indicators
from MAEC data. This customization can be performed at multiple levels, both
high-level and granular.

In terms of high-level customization options, maec-to-stix
offers the ability to specify:

	Whether to extract indicators for some predefined system activity OR based on a user-specified granular configuration.

	For extracting indicators based on predefined system activity, the particular type of activity to extract indicators for.
	E.g., file system, Windows registry, network, etc.

	Whether to normalize the indicator output to make it relatively system independent.

With regards to granular customization options, maec-to-stix
offers the ability to specify:

	The particular MAEC action types to attempt to extract indicators from.
	E.g., create file, create registry key, etc.

	The particular CybOX object types to attempt to extract indicators from, as well as the specific properties of each object type that are allowable for usage in an indicator.

Configuration Structures

The maec-to-stix configuration structures are stored in JSON files and have
two distinct levels of granularity. Details of how to edit and use the high-level
and granular configuration files, as well as information about the structures of
the files themselves can be found at:

	Indicator Extraction Configuration Files
	Main Configuration File

	Granular Configuration Files
	Granular Configuration File Defaults

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Indicator Extraction Configuration Files

This page describes the location and usage of the indicator extraction
configuration files. For details on the structures of the files and their
parameters please refer to the Main Configuration File or Granular Configuration Files
pages.

Overview

There are multiple configuration files - a main configuration file, one each
for the different types of system activity included by default, and one granular
configuration file that contains the full list of MAEC Actions and CybOX Objects:

	File
	Description
	Reference

	extractor_config.json
	The main configuration file.
	Main Configuration File

	driver_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	file_system_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	mutex_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	network_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	process_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	registry_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	service_activity_config.json
	System activity configuration file.
	Granular Configuration Files

	granular_config.json
	Full granular configuration file.
	Granular Configuration Files

Main Configuration File

The main configuration file is the driver of indicator extraction behavior
and is the first file parsed by the utility for this purpose. As such, it is
either automatically parsed by the utility from the maec-to-stix
installation directory, or passed in by the user. More information on this
can be found in the section below.

System Activity Configuration Files

Each of the system activity configuration files contains only the set of MAEC
Actions and CybOX Objects that are relevant in the context of the particular type
of system activity that it refers to. Note that not all of these Actions and CybOX
Objects and their properties are enabled in each activity-level configuration file
by default; please click on the file name above or refer to Granular Configuration File Defaults
for the list of default Actions and CybOX Objects in each. Thus, each of these files
may be edited for more granular control of a particular system activity for which to
extract indicators for.

Full Granular Configuration File

If one wishes to have even more control, there is a single “full”
granular configuration file that represents the FULL list of possible MAEC
Actions and CybOX Objects that may be configured for use in indicator extraction.
This file is only used by the utility if the use_granular_options parameter in
the Main Configuration File is set to true. Note that usage of this file
is mutually exclusive with usage of the system-level activity configuration files.

Installation and Usage

By default, the configuration files are installed in the maec-to-stix
installation directory in python/lib/site-packages. However, instead of
editing them in place there, we recommend copying them over to another directory
and making any changes as needed to these copies. To that end, we’ve provided
a script, copy_maec_to_stix_config.py, that will copy all of the configuration
files to a user-specified directory. For more information on this script, please
refer to copy_maec_to_stix_config.py.

Accordingly, in order to use any user-edited files, the utility needs to be told
where to find them. Luckily, this is a very simple process, for both the
maec_extract_indicators.py script, as well as the API.

maec_extract_indicators.py

maec_extract_indicators.py includes a –config_directory (or -c)
command-line parameter for specifying the directory where the configuration
files are located.

Example

As an example, let’s assume that we’ve edited the main configuration file
and some of the granular configuration files and placed them in /usr/tmp.
The following command-line would force maec_extract_indicators.py to use
these modified configuration files:

$ maec_extract_indicators.py --config_directory /usr/tmp maec_doc.xml --outfile stix_doc.xml

API

The maec-to-stix API supports passing in the path to the directory where the
configuration files are stored through the config_directory parameter in
maec_to_stix.extract_indicators().

Example

As an example, let’s assume that we’ve edited the main configuration file
and some of the granular configuration files and placed them in /usr/tmp.
The following maec-to-stix API usage demonstrates how these modified
configuration files would be passed in:

import maec_to_stix

Extract STIX Indicators from the 'sample_maec_package.xml' MAEC document
Pass in the modified configuration file
stix_package = maec_to_stix.extract_indicators('sample_maec_package.xml', config_directory="/usr/tmp")

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

API Documentation

The maec-to-stix APIs provide methods for wrapping MAEC data in
STIX and also extracting STIX Indicators from MAEC content. Listed below are the
modules and packages provided by the maec-to-stix library.

For examples of how make use of all of this, check out the Example Code
page.

Note

The maec-to-stix APIs are currently under heavy development. Feel free
to check out our issue tracker [https://github.com/MAECProject/maec-to-stix/issues] to see what we’re working on!

	maec_to_stix Module

	maec_to_stix.stix_wrapper Module

	maec_to_stix.indicator_extractor Module

	maec_to_stix.indicator_extractor.config_parser Module

	maec_to_stix.indicator_extractor.indicator_filter Module

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

 	API Documentation

maec_to_stix Module

	
maec_to_stix.extract_indicators(package, config_directory=None)

	Extract STIX Indicators from a MAEC Package file.

	Parameters:	
	package –
The MAEC Package file or file-like object to wrap.

	config_directory –
(optional) The path to the directory housing the indicator
extraction configuration files.

	Returns:	If indicators were extracted, a stix.STIXPackage instance with the
extracted STIX Indicators. Otherwise, if no indicators were extracted,
None.

	
maec_to_stix.wrap_maec_package(package)

	Wrap a MAEC Package file in a STIX Package/TTP.

	Parameters:	package –
The MAEC Package file or file-like object to wrap.

	Returns:	A stix.STIXPackage instance with the wrapped MAEC data.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

 	API Documentation

maec_to_stix.stix_wrapper Module

	
maec_to_stix.stix_wrapper.wrap_maec(maec_package, file_name=None)

	Wrap a MAEC Package in a STIX TTP/Package. Return the newly created STIX Package.

	Parameters:	
	maec_package –
the maec.package.package.Package instance to wrap in STIX.

	file_name –
the name of the input file from which the MAEC Package originated,
to be used in the Title of the STIX TTP that wraps the MAEC Package. Optional.

	Returns:	A stix.STIXPackage instance with a single TTP that wraps the input MAEC Package.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

 	API Documentation

maec_to_stix.indicator_extractor Module

	
class maec_to_stix.indicator_extractor.IndicatorExtractor(maec_package, file_name=None, config_directory=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Used to extract STIX Indicators from a MAEC Package.

	
stix_package

	the output STIX Package (with Indicators). An instance of the
stix.STIXPackage class.

	Parameters:	
	maec_package –
the input MAEC Package, an instance of the maec.package.package.Package class.

	file_name –
the name of the file that contained the MAEC Package. Optional.

	config_directory –
the path to the directory where the JSON configuration files can be found.
Optional.

	
extract()

	Attempt to extract STIX Indicators from the provided MAEC Package using
the specified configuration.

	Returns:	If indicators were extracted, a stix.STIXPackage instance with the
extracted STIX Indicators. Otherwise, if no indicators were extracted,
None.

	
exception maec_to_stix.indicator_extractor.UnsupportedMAECEntityException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Basic exception for throwing when an unsupported MAEC document type
is encountered.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

 	API Documentation

maec_to_stix.indicator_extractor.config_parser Module

	
class maec_to_stix.indicator_extractor.config_parser.ConfigParser(config_directory=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Used to parse the JSON indicator extraction configuration files.

	
config_dict

	the parsed dictionary representation of the main configuration file.

	
supported_actions

	the list of supported Actions (names).

	
supported_objects

	a dictionary of supported Objects and their properties.

	Parameters:	config_directory –
the path to the directory where the configuration files can be found.

	
static flatten_dict(d, parent_key='', sep='/')

	Flatten a nested dictionary into one with a single set of key/value pairs.

	Parameters:	
	d –
an input dictionary to flatten.

	parent_key –
the parent_key, for use in building the root key name
when handling nested dictionaries.

	sep –
the separator to use between the concatenated keys in the root key.

	Returns:	The flattened representation of the input dictionary.

	
parse_config()

	Parse the JSON configuration structure and build the appropriate data structures.

	
print_config()

	Print the current set of configuration parameters to stdout.

Note

This method prints detailed information about the parsed Indicator
extraction configuration, including:

	The general Indicator extraction parameters (from config/extractor_config.json)

	The supported Actions (derived from all of the parsed JSON configuration files)

	The supported Objects and their properties (derived from all of the parsed JSON configuration files)

	The contra-indicators and modifiers to use in candidate Object filtering

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

 	API Documentation

maec_to_stix.indicator_extractor.indicator_filter Module

	
class maec_to_stix.indicator_extractor.indicator_filter.IndicatorFilter(config)

	Bases: object [http://docs.python.org/library/functions.html#object]

Used to filter Object History entries through contraindicator checking and
required property checking. Also, used to prune any extraneous properties from
an Object.

	Parameters:	config –
The configuration structure. An instance of maec_to_stix.indicator_extractor.config_parser.ConfigParser.

	
prune_objects(candidate_indicator_objects)

	Perform contraindicator and required property checking and prune un-wanted
properties from the input list of candidate Indicator CybOX Objects.

	Parameters:	candidate_indicator_objects –
a list of maec.bundle.object_history.ObjectHistoryEntry objects representing
the initial list of CybOX Objects that may be used in the STIX Indicators.

	Returns:	A list of maec.bundle.object_history.ObjectHistoryEntry objects representing
the final list of checked and pruned CybOX Objects that will be used for the STIX Indicators.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	maec-to-stix 1.0.0-alpha1 documentation

Example Code

The following sections demonstrate how to use the maec-to-stix library to
wrap MAEC content in STIX and also extract STIX Indicators from MAEC.
For more details about the maec-to-stix API, see the API Documentation page.

Import maec-to-stix

To use maec-to-stix for wrapping MAEC in STIX and extracting STIX Indicators,
you must import the maec-to-stix module. There are lots of functions, classes, and
submodules under maec-to-stix, but the top-level module is all you need for most usage.

import maec_to_stix # That's it!

Wrapping MAEC Content in STIX

Wrapping MAEC content with maec-to-stix is simple - once the imports are
taken care of, you only need to call the maec_to_stix.wrap_maec_package() method,
which parses the input MAEC Package, wraps it in STIX, and returns an instance of a
stix.STIXPackage class (from the python-stix API) with the wrapped MAEC content.

import maec_to_stix

Wrap the 'sample_maec_package.xml' MAEC document in a STIX Package
stix_package = maec_to_stix.wrap_maec_package('sample_maec_package.xml')

Note

	The maec_to_stix.wrap_maec_package() method expects a filename to be passed in.

	For passing in maec.Package objects directly, please see the maec_to_stix.stix_wrapper Module
documentation.

Extracting STIX Indicators from MAEC Content

Extracting STIX Indicators from MAEC content with maec-to-stix is equally simple -
once the imports are taken care of, you only need to call the
maec_to_stix.extract_indicators() method, which parses the input MAEC Package,
attempts to extract STIX Indicators from it, and returns an instance of a
stix.STIXPackage class (from the python-stix API) with the extracted Indicators.

import maec_to_stix

Extract STIX Indicators from the 'sample_maec_package.xml' MAEC document
stix_package = maec_to_stix.extract_indicators('sample_maec_package.xml')

Note

	The maec_to_stix.extract_indicators() method expects a filename to be passed in.

	For passing in maec.Package objects directly, please see the maec_to_stix.indicator_extractor Module
documentation.

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	maec-to-stix 1.0.0-alpha1 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 maec_to_stix	

 	
 	
 maec_to_stix.indicator_extractor	

 	
 	
 maec_to_stix.indicator_extractor.config_parser	

 	
 	
 maec_to_stix.indicator_extractor.indicator_filter	

 	
 	
 maec_to_stix.stix_wrapper	

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	maec-to-stix 1.0.0-alpha1 documentation

Index

 C
 | E
 | F
 | I
 | M
 | P
 | S
 | U
 | W

C

 	

 	config_dict (maec_to_stix.indicator_extractor.config_parser.ConfigParser attribute)

 	

 	ConfigParser (class in maec_to_stix.indicator_extractor.config_parser)

E

 	

 	extract() (maec_to_stix.indicator_extractor.IndicatorExtractor method)

 	

 	extract_indicators() (in module maec_to_stix)

F

 	

 	flatten_dict() (maec_to_stix.indicator_extractor.config_parser.ConfigParser static method)

I

 	

 	IndicatorExtractor (class in maec_to_stix.indicator_extractor)

 	

 	IndicatorFilter (class in maec_to_stix.indicator_extractor.indicator_filter)

M

 	

 	maec_to_stix (module)

 	maec_to_stix.indicator_extractor (module)

 	maec_to_stix.indicator_extractor.config_parser (module)

 	

 	maec_to_stix.indicator_extractor.indicator_filter (module)

 	maec_to_stix.stix_wrapper (module)

P

 	

 	parse_config() (maec_to_stix.indicator_extractor.config_parser.ConfigParser method)

 	print_config() (maec_to_stix.indicator_extractor.config_parser.ConfigParser method)

 	

 	prune_objects() (maec_to_stix.indicator_extractor.indicator_filter.IndicatorFilter method)

S

 	

 	stix_package (maec_to_stix.indicator_extractor.IndicatorExtractor attribute)

 	supported_actions (maec_to_stix.indicator_extractor.config_parser.ConfigParser attribute)

 	

 	supported_objects (maec_to_stix.indicator_extractor.config_parser.ConfigParser attribute)

U

 	

 	UnsupportedMAECEntityException

W

 	

 	wrap_maec() (in module maec_to_stix.stix_wrapper)

 	

 	wrap_maec_package() (in module maec_to_stix)

 Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

indicator_extraction/granular_config.html

 Navigation

 		
 index

 		
 modules |

 		maec-to-stix 1.0.0-alpha1 documentation »

Granular Configuration Files

This page explains the structure and properties of the granular configuration
files used in configuring the behavior of the indicator extraction feature
of maec-to-stix. For the default values used in each granular configuration
file, please refer to the Granular Configuration File Defaults page.

Structure

The system activity and granular configuration files capture two distinct entities:

		The supported types of MAEC Actions, based on the vocabulary from which they originate.

		The supported types of CybOX Objects, along with their individual properties.

Thus, the general structure of the system activity and granular configuration files is
as follows:

{
 "supported actions": {"<action vocabulary>":{"<vocabulary entry>":"<boolean>"}},
 "supported objects" : {"<object type>" : {"<object property>" : {"enabled":"<boolean>",
 "required":"<boolean>"}}}
}

We’ll discuss the parameters relevant to each type of entity in the next sections.

Action Configuration Parameters

All entries from each respective MAEC Action vocabulary are included inside of the
“supported actions” section of the configuration file for the sake of completeness
and ease-of-use. As such, not all are supported by default, but can be configured
by use of a value of true (indicating that it is supported for use in indicator
extraction) or false (indicating that it is not supported for use in indicator
extraction). Thus, the syntax for Action vocabulary entry configuration entries is
simply:

{"<vocabulary entry>" : true | false}

Example

As an example, the following Action configuration JSON blob for the DNSActionNameEnum
would indicate that maec-to-stix would attempt to extract Indicators
resulting from send dns query Actions. Conversely, it would NOT attempt to extract
indicators resulting from send reverse dns lookup Actions.

{"DNSActionNameEnum-1.0":
 {
 "send dns query":true,
 "send reverse dns lookup":false
 }
}

Object Configuration Parameters

As compared to Actions, the act of configuring CybOX Objects in the context
of indicator extraction is inherently more complex due to the fact that it’s
necessary to configure the particular properties supported on each Object.
Otherwise, there’s no guarantee that a CybOX Object that ends up in a STIX
Indicator will contain fields that are useful in this context (especially
with regards to detection).

Besides this, it can be necessary to have finer-grained control over the
properties of an Object with respect to its usage in an indicator, including
the ability to specify whether a particular property MUST occur on an Object,
or whether it is optional. There may also be a need to whitelist on certain
known property values, so that they do not inadvertently get used in an
indicator. For instance, certain file names or registry keys may correspond
to common values that would result in false positives.

The general syntax for Object property configuration settings is:

{"<object type>":
 {"<object property name>" : {"enabled": true | false,
 "required": true | false}}
}

Where <object type> refers to the root type of a CybOX Object (e.g.
FileObjectType) and “<object property name>” refers to the name of
a property (field) of the CybOX Object (e.g. File_Path).

Listing

The following parameters may be specified for each Object property.

		Name
		Type
		Default
		Example

		enabled
		Boolean
		false
		n/a

		required
		Boolean
		false
		n/a

		mutually_exclusive
		Boolean
		n/a
		n/a

		whitelist
		List
		n/a
		[“^10\.([0-9]\.?)+$”]

Description

		enabled: whether or not the property should be extracted and used in the STIX Indicator. A value of true indicates that the property should be extracted, while a value of false indicates that it should not be. Thus, all other parameters are valid only in conjunction with this parameter being set to true. Note that unless a CybOX Object has at least one property marked as enabled, it will simply be ignored and will not be used in any STIX Indicators.

		required: whether the property MUST be found on the Object in order for the Object to be included in the STIX Indicator. Only valid if enabled is set to true. A value of true indicates that the property MUST be found on the Object, whereas a value of false indicates that the property is optional and therefore will be included if found on the Object. Note that if multiple values are marked as required, ALL must be found on the Object in order for it to be used in the STIX Indicator.

		mutually_exclusive (optional): whether the property is mutually exclusive with respect to other properties marked as such. This is intended to be used in cases where certain required properties are mutually exclusive with each other on an Object; thus, declaring such properties entails that an Object will used in the STIX Indicator only if one of these properties is found. Only valid if enabled is set to true AND required is set to true. A value of true indicates that the property is mutually exclusive with regards to other properties marked as such, and therefore only one of these properties must be found on the Object in order for it to be used in the STIX Indicator. A value of false indicates that the property functions as any other non-mutually exclusive required property.

		whitelist (optional): a list of Python-compatible regular expressions that signify patterns of values on the property that should be ignored and thus excluded from use in the STIX Indicator. Accordingly, this means that if an Object has a property marked as required and the value of this property matches against one or more of these regular expressions, the Object will be completely excluded from the STIX Indicator output.

Example

As an example, the following JSON blob demonstrates that either the Hostname/Hostname_Value property or the IP_Address/Address_Value property MUST be found on an instance of the Socket Address Object (SocketAddressObjectType), due to the fact that both of their required and mutually_exclusive parameters are set to true. Also, the Port/Port_Value property will be included if found on an instance of the Object, but it is not required, due to the fact that its enabled parameter is set to true but its required parameter is set to false.

{"SocketAddressObjectType": {"hostname": {"hostname_value":{"enabled":true,
 "required":true,
 "mutually_exclusive":true},
 "naming_system":{"enabled":false,
 "required":false}},
 "ip_address": {"address_value":{"enabled":true,
 "required":true,
 "mutually_exclusive":true},
 "vlan_name":{"enabled":false,
 "required":false},
 "vlan_num":{"enabled":false,
 "required":false}},
 "port": {"layer4_protocol":{"enabled":false,
 "required":false},
 "port_value":{"enabled":true,
 "required":false}}}}

 © Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		maec-to-stix 1.0.0-alpha1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

indicator_extraction/high_level_config.html

 Navigation

 		
 index

 		
 modules |

 		maec-to-stix 1.0.0-alpha1 documentation »

Main Configuration File

This page explains the structure and properties of the main configuration
file (extractor_config.json) used in configuring the behavior of the
indicator extraction capability of maec-to-stix.

Structure

The structure of the high-level indicator extraction configuration is as a simple JSON blob:

{
 "use_granular_options":false,
 "normalize_objects":true,
 "abstracted_options": {"file_system_activity":true,
 "registry_activity":true,
 "mutex_activity":true,
 "process_activity":false,
 "network_activity":true,
 "service_activity":false,
 "driver_activity":false},
 "contraindicators": ["delete", "kill"],
 "modifiers": ["move", "copy", "rename"]
}

Parameters

		Name
		Type
		Default

		use_granular_options
		Boolean
		false

		normalize_objects
		Boolean
		true

		driver_activity
		Boolean
		false

		file_system_activity
		Boolean
		true

		registry_activity
		Boolean
		true

		mutex_activity
		Boolean
		true

		process_activity
		Boolean
		false

		network_activity
		Boolean
		true

		service_activity
		Boolean
		false

		contraindicators
		List
		[“delete”, “kill”]

		modifiers
		List
		[“move”, “copy”, “rename”]

Description

		use_granular_options: whether to use the granular configuration file (granular_config.json) to drive the indicator extraction behavior OR to use the abstracted system-level activity configuration files. Thus, a value of true indicates that the granular configuration will be used and the system-level configuration files will not; conversely, a value of false indicates that the system-level configuration files will be used and the granular configuration file will not.

		normalize_objects: whether the CybOX Objects used in the STIX Indicators should be normalized. For more information on what this entails, please refer to Object Normalization.

		abstracted_options: the particular set of system-level activities to attempt to extract indicators for, and thus is only applicable if use_granular_options is set to false. The following keys are allowed in the dictionary that specifies the set of system-level activities:
		file_system_activity: whether to attempt to extract indicators for file-system activity, such as file copying.

		registry_activity: whether to attempt to extract indicators for Windows registry activity, such as registry key creation.

		mutex_activity: whether to attempt to extract indicators for mutex activity, such as mutex creation.

		process_activity: whether to attempt to extract indicators for process activity, such as process creation.

		network_activity: whether to attempt to extract indicators for network activity, such as connecting to an IP address.

		service_activity: whether to attempt to extract indicators for service activity, such as service creation.

		driver_activity: whether to attempt to extract indicators for driver activity, such as driver creation.

		contraindicators: a list of terms to look for in MAEC Action names that may indicate that an Object is no longer present after the execution of the malware. Used in candidate Object filtering; for more information please refer to Contra-indicator Testing.

		modifiers: a list of terms to look for in MAEC Action names that may indicate that the state of the Object has changed in some way that would render it undetectable. Primarily applicable to files and used in candidate Object filtering; for more information please refer to Contra-indicator Testing.

Object Normalization

The underlying differences in the implementation, infrastructure, and environment of
dynamic anti-malware analysis tools (i.e. sandboxes) means that they report
things slightly (or vastly, depending on the case) differently, even for the same
malware sample. To help with this, when normalize_objects is set to true,
maec-to-stix uses the Normalize [https://github.com/CybOXProject/python-cybox/blob/master/cybox/utils/normalize.py] module from python-cybox to normalize
certain CybOX Objects and make them independent of the environment in which they were
recorded. In particular, this module supports normalizing the following objects and
their corresponding fields:

		File Objects
		File_Path field. Normalized for common Windows paths/environment variables.

		Windows Registry Key Objects
		Registry Value/Data field. Normalized for common Windows paths/environment variables.

		Hive field. Normalized for full representation from abbreviated form. E.g., HKLM -> HKEY_LOCAL_MACHINE.

		Process Objects
		Image_Info/Path field. Normalized for common Windows paths/environment variables.

Example

The following example demonstrates the changes made by the the Normalize [https://github.com/CybOXProject/python-cybox/blob/master/cybox/utils/normalize.py] module to an applicable
CybOX Object.

Before Normalization

<cybox:Object>
 <cybox:Properties xsi:type="FileObj:FileObjectType">
 <FileObj:File_Path condition="Equals">C:\Windows\System32\sdra64.exe</FileObj:File_Path>
 </cybox:Properties>
</cybox:Object>

After Normalization

<cybox:Object>
 <cybox:Properties xsi:type="FileObj:FileObjectType">
 <FileObj:File_Path condition="Equals">CSIDL_SYSTEM\sdra64.exe</FileObj:File_Path>
 </cybox:Properties>
</cybox:Object>

 © Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

_images/maec_to_stix_process.png
Malware
Sample

?

&
MAEC Enabled

Dynamic
Analysis Tools

MZC Package

Create service

Cyb2X Semvice

MAEC to STIX

STIX Package

Indicator

Indicator

CyboX
Service

Human Analyst

indicator_extraction/granular_config_defaults.html

 Navigation

 		
 index

 		
 modules |

 		maec-to-stix 1.0.0-alpha1 documentation »

Granular Configuration File Defaults

This page describes the default configuration settings included in each of the
granular system activity indicator extraction configuration files. For more
information on what these settings mean, please refer to the Granular Configuration Files
documentation.

driver_activity_config.json

Supported Actions

		load and call driver

		load driver

Supported Objects

		WindowsDriverObjectType
		Required Fields
		driver_name

		file_path

		Optional Fields
		file_name

file_system_activity_config.json

Supported Actions

		copy file

		create file

		modify file

		move file

		rename file

		write to file

Supported Objects

		ArchiveFileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

		FileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

		ImageFileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

		PDFFileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

		UnixFileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

		WindowsExecutableFileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

		WindowsFileObjectType
		Required Fields
		file_path

		Optional Fields
		file_name

		hashes/hash/simple_hash_value

		hashes/hash/type

mutex_activity_config.json

Supported Actions

		create mutex

Supported Objects

		MutexObjectType
		Required Fields
		name

		WindowsMutexObjectType
		Required Fields
		name

network_activity_config.json

Supported Actions

		connect to ip

		connect to socket address

		connect to url

		download file

		get host by address

		send dns query

		send email message

		send http get request

		send icmp request

Supported Objects

		AddressObjectType
		Required Fields
		address_value

		DNSQueryObjectType
		Required Fields
		question/qname/value

		Optional Fields
		answer_resource_records/resource_record/domain_name/value

		answer_resource_records/resource_record/ip_address/address_value

		DomainNameObjectType
		Required Fields
		value

		EmailMessageObjectType
		Required Fields
		header/subject

		header/to/recipient/address_value

		Optional Fields
		header/from/address_value

		HTTPSessionObjectType
		Required Fields
		http_request_response/http_client_request/http_request_header/parsed_header/host/domain_name/value

		http_request_response/http_client_request/http_request_line/value

		Optional Fields
		http_request_response/http_client_request/http_request_header/parsed_header/host/port/port_value

		http_request_response/http_client_request/http_request_header/parsed_header/user_agent

		http_request_response/http_client_request/http_request_line/http_method

		NetworkConnectionObjectType
		Mutually Exclusive Required Fields
		destination_socket_address/hostname/hostname_value

		destination_socket_address/ip_address/address_value

		Optional Fields
		destination_socket_address/port/port_value

		layer7_connections/dns_query/answer_resource_records/resource_record/domain_name/value

		layer7_connections/dns_query/answer_resource_records/resource_record/ip_address/address_value

		layer7_connections/dns_query/question/qname/value

		layer7_connections/http_session/http_request_response/http_client_request/http_request_header/parsed_header/host/domain_name/value

		layer7_connections/http_session/http_request_response/http_client_request/http_request_header/parsed_header/host/port/port_value

		layer7_connections/http_session/http_request_response/http_client_request/http_request_header/parsed_header/user_agent

		layer7_connections/http_session/http_request_response/http_client_request/http_request_line/http_method

		layer7_connections/http_session/http_request_response/http_client_request/http_request_line/value

		layer7_protocol

		SocketAddressObjectType
		Mutually Exclusive Required Fields
		hostname/hostname_value

		ip_address/address_value

		Optional Fields
		port/port_value

		URIObjectType
		Required Fields
		value

process_activity_config.json

Supported Actions

		create process

		create thread

Supported Objects

		ProcessObjectType
		Required Fields
		image_info/path

		Optional Fields
		image_info/file_name

		name

		UnixProcessObjectType
		Required Fields
		image_info/path

		Optional Fields
		image_info/file_name

		name

		WindowsProcessObjectType
		Required Fields
		image_info/path

		Optional Fields
		image_info/file_name

		name

registry_activity_config.json

Supported Actions

		create registry key

		create registry key value

		modify registry key

		modify registry key value

Supported Objects

		WindowsRegistryKeyObjectType
		Required Fields
		hive

		key

		Optional Fields
		values/value/data

		values/value/name

service_activity_config.json

Supported Actions

		create service

Supported Objects

		WindowsServiceObjectType
		Required Fields
		image_info/path

		service_name

		Optional Fields
		display_name

		image_info/file_name

 © Copyright 2014, The MITRE Corporation.
 Created using Sphinx 1.2.1.

